Models of Set Theory I – Summer 2017

Prof. Peter Koepke, Dr. Philipp Lücke – Problem Sheet 4

Problem 13 [6 points]

- 1. Show that the following are definite terms.
 - (a) $(x, y), x \times y$ and $f \upharpoonright x$
 - (b) TC(x)
 - (c) V_n , for every $n \in \omega$; V_{ω}
- 2. Provide a definite formula $\varphi(x)$ which holds true exactly if x is finite.
- 3. For a set y let $\mathcal{P}_{\omega}(y)$ denote the collection of finite subsets of y, and show that $\mathcal{P}_{\omega}(y)$ is definite.
- 4. For a set y let $[y]^{<\omega}$ denote the collection of finite sequences of elements of y, and show that $[y]^{<\omega}$ is definite.

Problem 14 [4 points] Show that the following terms are not definite.

- 1. ω_1
- 2. $\mathcal{P}(\omega)$

Problem 15 (Undefinability of Truth) [4 points] Show that there is no \mathcal{L}_{\in} -formula $\varphi(v_0, v_1)$ with

$$\operatorname{ZFC} \vdash \forall c \in \operatorname{Fml} \forall x \, \forall y \, \left[(\varphi(c, x) \, \land \, \varphi(c, y)) \, \rightarrow \, x = y \right]$$

and

$$\operatorname{ZFC} \vdash \exists x \,\forall y \, [\psi(y) \iff x = y] \to \forall y \, [\varphi(\ulcorner \psi \urcorner, y) \iff \psi(y)]$$

for every \in -formula $\psi(v)$.

Hint: Show that there is an ordinal α with $\neg \varphi(n, \alpha)$ for all $n \in Fml$ and consider the least ordinal with this property.

Problem 16 [6 points] Let $\langle M_i | i \in \omega \rangle$ be a sequence of sets and let $\langle f_{ij} | 0 \leq i < j < \omega \rangle$ be a system of maps such that each f_{ij} is an embedding (=an injective homomorphism) from $\langle M_i, \in \rangle$ to $\langle M_j, \in \rangle$. Assume that the f_{ij} commute, that is whenever $i < j < k < \omega$, then $f_{ik} = f_{jk} \circ f_{ij}$.

- 1. Show that there is a structure $\langle M, E \rangle$ such that each $\langle M_i, \in \rangle$ embeds into $\langle M, E \rangle$ by an embedding f_i with the property that $f_i = f_j \circ f_{ij}$ whenever $i < j < \omega$. Show that there is such a structure $\langle M, E \rangle$, which is unique up to isomorphism, such that whenever $\langle N, F \rangle$ is another such structure, then there is an embedding from $\langle M, E \rangle$ to $\langle N, F \rangle$.
- Hint: Consider the structure consisting of pairs $\langle i, x \rangle$ where $i < \omega$ and $x \in M_i$, and identify two of its elements $\langle i, x \rangle$ and $\langle j, y \rangle$ if i < j and $f_{ij}(x) = y$. We call the resulting structure the direct limit of the sequence of sets and system of maps.
 - 2. Provide an example of a sequence of sets and a system of maps as above, such that the corresponding direct limit $\langle M, E \rangle$ as obtained in the first part of this exercise is not well-founded, that is there is a sequence $\langle x_i \mid i < \omega \rangle$ in M such that $x_{i+1} E x_i$ for every $i < \omega$.